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Abstract: The application of Artificial Intelligence to target classification problems 
typically requires substantial amounts of training data. Applications in the underwater 
domain often suffer from a lack of experimental target data. In addition, operational 
conditions that affect the target response may be uncertain or unknown. In this paper, a 
method is described and evaluated that explores the use of Target-In-Environment-
Response (TIER) simulations to generate sufficient amounts of training data for the 
discrimination of proud or (partially) buried Unexploded Ordnance and clutter, using 
low-frequency Synthetic Aperture Sonar (SAS). As a use case we attempt to discriminate 
two types of cylindrical dummy targets from clutter. The TIERs of the dummy targets are 
simulated for a variety of burial depths, orientations and sediment types. Together with 
field recordings of clutter, they are used for training a Convolutional Neural Network. The 
trained network is evaluated against discriminating synthetic target data and clutter as 
well as real target data and clutter, the latter both recorded in field experiments using 
TNO’s MUD system. The use of two SAS data representations has been analysed: 
conventional time-domain SAS images and Multi-Aspect Acoustic Colour (MAAC) images. 
The Receiver Operating Curves (ROC) of the CNN for evaluation against an independent 
set of synthetic data shows an average Area-Under-Curve of 0.99 for both data types. 
Application on real data shows a performance reduction for SAS images to an AUC of 
0.86, which is considered reasonable. For MAAC images, however, the performance 
breaks down to an AUC of 0.64. A mismatch between target model and actual target, in 
conjunction with CNN overfitting, is suspected to be the main reason for this performance 
drop. Suggestions are made to extend the training set with simulations that include several 
variations in the target models, in order to reduce the sensitivity to the precise target 
properties. 
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1. INTRODUCTION 

1.1. Problem  

The application of deep learning typically requires substantial amounts of training data 
with sufficient variation in order to train good classifiers and provide reliable target 
recognition in operational environments. Particularly for military operations, several 
challenges hinder the successful application of deep learning: 

- A lack of availability of high volumes of relevant target data for training, leading to 
under specification [1]. 

- Biases or data shifts in training sets caused by environmental conditions, which 
may have a significant impact on target signature and background reverberation 

- Lack of variability in deployment characteristics, such as target orientations and 
burial depths 

- Unavailability of particular (enemy) targets in experimental data 

As a consequence of these challenges, it is not guaranteed that a trained target 
recognition approach is applicable to the prevalent operational conditions. To overcome 
these challenges, an attempt is made to use large amounts of synthetic target data for  
training a classifier.  

1.2. Use case 

The Mine Underground Detection (MUD) system [2] has been developed to detect and 
localize buried objects in the seabed in inshore environments, such as harbours. It uses an 
interferometric low-frequency Synthetic Aperture Sonar (LF-SAS) as primary sensor to 
detect proud and buried objects, which operates at frequencies below 30 kHz. During 
several field experiments, recordings have been made of mine-like targets. Among those 
are two dummy UXO: NL-REF and NL-CYL. NL-REF is a 0.5 m x 1 m aluminium 
cylinder with internal structure and filled with water. NL-CYL is a 0.3 x 0.6m solid 
aluminium cylinder. It is a replica of the target used by [3]. See Fig. 3.  

In the use case described in this paper synthetic target data of the two dummy UXO are 
generated with a developed target simulation framework. They are used in conjuction with 
real clutter images to train a Convolutional Neural Network (CNN). The trained network 
is evaluated against real target images and real clutter images. The reliability of the 
classifier is considered through self-assessment. . 

2. GENERATION OF SYNTHETIC TARGET-IN-ENVIRONMENT DATA 

Synthetic Target-in-Environment images are generated according to the flowchart 
given in Fig. 1. TIER simulation comprises the computation of a generic Look-up Table 
(LUT) containing aspect and frequency dependent target responses, including the 
interaction between the target and a sediment interface layer. With this table, large 
numbers of measurement realisations can be generated for the particular target in which 

UACE2023 - Conference Proceedings

Page 330



 

 

the characteristics of the used sonar are applied and in which target deployment locations 
and orientations can be varied. Both blocks will be described in more detail in this section.  
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Fig.1: Flowchart of the simulation framework for generating augmented TIER images 

2.1. Target-in-environment response simulation 

In FEM simulations the aspect and frequency dependent target response is computed, 
including the interaction between the target and the sediment interface layer(s). TNO-
AXISCAT [4] is a high-fidelity simulation capability that is used for this purpose (Fig. 2). 
It is based on finite-element modelling (FEM) and simulates the full elastic response of 
axisymmetric objects, such as cylinders.  

 
 
Fig.2: Overview of TNO-AXISCAT for simulating the Target-in-Environment Response  

2.2. Scenario application 

The generated LUT is used in a computationally cost-efficient way to generate large 
numbers of image realisations of the same target under different operational and 
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deployment conditions. This provides the ability to create a significant training data set 
with randomized variations in responses, which are indicated in Fig. 1. 

For the generation of a single SAS image, a vehicle trajectory is simulated along a 
target at a given location, orientation and burial depth. For each ping, the target response is 
extracted from the LUT. The responses are corrected for propagation loss and for the 
angle and frequency dependent sonar response. The responses are converted to time 
domain for all receiving hydrophones, resulting in an entire sonar recording for the given 
vehicle track. The resulting data is processed with the same sonar processing chain that is 
used for processing field data. Potential navigation errors can be added to avoid too 
perfect target image reconstruction. Ultimately, the target’s SAS image is coherently 
blended with random background SAS images extracted from field recordings of several 
environments. Fig. 3 shows examples of real and synthetic SAS and Multi-Aspect 
Acoustic Colour (MAAC) images for two realisations of the example targets. 

 
Fig.3: Real (top center) and simulated (top right) MAAC image of NL-REF target (top 

left). Real (bottom center) and simulated (bottom right) SAS image of NL-CYL target 
(bottom left). 

3. TARGET CLASSIFICATION APPROACH 

For the classification between target and clutter, a CNN is used. The target class 
comprises the collection of NL-REF and NL-CYL images. For training, only the synthetic 
images are used. The clutter class consists of clutter images recorded in field experiments. 
Two CNNs are trained and evaluated, each using a different data representation. One CNN 
is trained on conventional time-domain Synthetic Aperture Sonar (SAS) images, the other 
CNN on Multi-Aspect Acoustic Color (MAAC) images. The results of both CNNs are 
assessed individually. 

3.1. Basic CNN architecture 

The architecture of the used CNN is shown in Fig. 4. The input size of the images are 
scaled to [n×m]=256×256. The dense layer of the single input architecture has size 
[k]=576. The models are trained with an Adam optimizer [5], using a learning rate 
scheduler where the learning rate is reduced by a factor γ<1 with each epoch. In our 
experiments we used γ=0.95. An initial learning rate of 0.001 is used; the model is trained 
for 100 epochs with a batch size of 60 on a single GPU. 
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Fig.4: Basic architecture of the CNN used for classification of target and clutter. 

3.2. Classifier reliability 

Deep neural networks have the tendency to be overconfident in classifying test samples 
that are outside the distribution of the training set, producing confidence values as high as 
those for samples that are within the distribution [6][7]. Since the confidence (or 
uncertainty) of a classifier becomes important in safety critical applications, the 
investigation of neural network uncertainty is of high relevance. There exist methods to 
improve the uncertainty estimates in classifier output, like Bayesian neural networks, 
where the epistemic (model) uncertainty is estimated by Markov Chain Monte Carlo 
methods or variational inference [8]. A simpler and computationally less demanding 
method is Monte Carlo dropout [9]. 

In this paper another conceptually simple method is used that constructs ensembles of 
multiple networks [10]. In this ensemble approach, the network is trained several times 
using different random weight initializations. The trained networks will reflect uncertainty 
by their spread in classification outputs. It has been observed in imaging experiments that 
ensembles can produce better uncertainty estimates than Bayesian neural networks or 
Monte Carlo dropout [11][12]. 

4. EXPERIMENTS AND RESULTS 

Training data consisted of ~1000 synthetic NL-CYL and NL-REF target views and 
~500 real clutter images. The trained classifier was evaluated on an independent set of 
synthetic data and real clutter. This was the baseline result. Additionally the classifier was 
evaluated on the set of real targets and real clutter. The set of real targets consisted of a 
total of 78 NL-CYL and NL-REF images with different target orientations, grazing angles 
and burial depths. The set of real clutter was an independent set of 153 images.  

4.1. Application to synthetic target data 

Fig. 5 shows ROC curves of the baseline test:  

 Training: synthetic targets vs. real clutter  
 Evaluation: synthetic targets vs. real clutter (independent sets) 
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The left image is the result of the CNN classifier for SAS images, the right image is the 
result of the CNN for MAAC images. The Area Under Curve (AUC) is around 0.99 for 
both cases, which is a good result. 

 
Fig.5: ROC curves (blue) of classifier evaluation on synthetic target data vs. real 

clutter using SAS images (left) and MAAC images (right). For comparison, the result of a 
random classifier (red) that cannot distinguish between targets and clutter is shown. 

4.2. Application to real target data 
 
Fig. 6 shows ROC curves of the real target test:  

 
 Training: synthetic targets vs. real clutter  
 Evaluation: real targets vs. real clutter (independent set) 

 
The left image is the result of the CNN classifier for SAS images, the right of the CNN for 
MAAC images. The result of the SAS classifier with an AUC of 0.86 is considered to be 
acceptable for the given test scenario. The result of the MAAC classifier with an AUC of 
0.64 is considered to be poor. 

 
Fig.6: ROC curves (blue) of classifier evaluation on real target data vs. real clutter 

data using SAS images (left) and MAAC images (right).  
 

To provide insight in the difference in classification performance between NL-CYL 
and NL-REF, a sample point is taken at the dashed orange line in the left ROC-curve of 
Fig. 6. At this point the False Alarm Rate (FAR) equals 0.17, indicating that at this 
confidence threshold 17% of the clutter contacts are falsely classified as targets. At this 
FAR, 100% of the NL-CYL targets are classified correctly and 70% of the NL-REF 
targets are classified correctly.  
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4.3. Classifier reliability 

Fig. 7 shows the self-assessment results of a single classifier and an ensemble classifier 
for SAS images, respectively. These plots have been generated from the experiment where 
SAS data of the real targets was used in evaluation (Fig. 6 left). The calibration curves 
should ideally follow the dashed, orange line. For example, of all the samples that 
received a classifier predicted probability of 0.8 of being a target, the fraction of target 
samples in this subset should also be 0.8 for a well calibrated classifier, indicating that the 
predicted probability represents the actual probability of seeing a target. 

The use of an ensemble classifier instead of a single classifier overall shows an 
improvement in reliability. The fact that the calibration curves in general still differs from 
the optimum line may partly be assigned to a remaining classifier calibration error. 
However, the small amount of real target data in evaluation potentially also plays a role. 

 

                         
 

Fig.7: Calibration curve of the single classifier (left) and the ensemble classifier (right) 
from the classifier using SAS images of the real target data. 

5. CONCLUSIONS 

The use of synthetic data for training a deep neural network for the classification of 
mine-like targets has shown some preliminary potential. The results of the classification of 
real targets and real clutter using SAS images are reasonable. The classification results 
using MAAC images are still poor, however. The self-assessment performance of the 
classifier is of a reasonable level. The benefit of using an ensemble classifier as opposed to 
a single classifier is observable. 

The hypothesis for the difference in performance between MAAC and SAS images is 
the fact that MAAC images contain more detailed information on target scattering than 
SAS images (without phase). Deviations in the synthetic model of the target may therefore 
be more prone to overfitting. Improving the target model to create a better match with the 
actual target would potentially improve results. However, fitting a classifier to this exact 
target, will not result in an operationally applicable solution; it may be required to force 
the classifier to generalize in order to derive a more generic picture of a cylindrical target. 
Consequently, some recommendations are to reduce the amount of detail in the images, 
e.g. by down sampling the images, or to extend the training set with additional simulations 
where the target properties are modified.  
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